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Abstract 

This research presents a methodology for improving the capability of a small 

unmanned aircraft system (SUAS) to autonomously track a moving ground vehicle.  One 

drawback of the most common open source SUAS autopilot software, APM:Plane, is the 

inability to maintain a consistent following distance from the target vehicle under varying 

conditions defined by wind direction, wind speed, and target vehicle maneuver.  Finite 

state machine (FSM) logic was developed to improve the APM:Plane software by 

reducing the variability in the following distance between the SUAS and the target 

vehicle.  The FSM consists of 36 individual states defined by a combination of four wind 

directions, three wind speeds, and three ground maneuvers.  Once the SUAS enters a 

particular state, the FSM modifies the default APM:Plane firmware parameter settings to 

optimal settings.  The parameter settings for each state were determined from the 

statistical analysis of a sequence of designed experiments conducted in a simulated 

environment.  During a real-world software validation experiment, the FSM reduced 

following distance variance by an average of 50 percent when compared to the default 

software settings.  
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DEVELOPMENT OF A FINITE STATE MACHINE FOR A SMALL 
UNMANNED AIRCRAFT SYSTEM USING EXPERIMENTAL DESIGN 

 
I.  Introduction 

1.1  Context 

Emerging technologies that increase the autonomous capability of unmanned 

systems are under development.  Of particular interest to this research effort are 

autonomous enhancements to Small Unmanned Aircraft Systems (SUAS).  When 

compared to their larger counterparts, SUAS can be used for many of the same 

applications and enjoy the advantage of being relatively inexpensive.  Reduced cost and 

valuable capability point to increased future usage of SUAS. 

One capability, autonomous vehicle tracking, is the focus of this research.  This 

has applications in the United States Department of Defense that include convoy over-

watch and surveillance.  An SUAS able to provide valuable mission support 

autonomously would likely be fielded in large numbers.  The ability of the end user to 

operate the SUAS without significant training and/or highly trained support personnel is 

one factor that would make this so.  The significance of an SUAS capable of autonomous 

mission support cannot be overstated.  Every convoy commander could enjoy a bird’s eye 

view of the vehicles in his or her convoy and monitor the route for current threats.  Every 

tactical unit could track a tagged vehicle to a target destination and obtain real-time 

information.  In sum, adding this capability to lower echelon units is potentially life-

saving. 
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1.2  Problem Background and Statement 

The APM (formerly ArduPilotMega) autopilot running the APM:Plane firmware 

provides inexpensive autonomous capability to fixed-wing SUAS.  The APM:Plane 

firmware is free, open source software written in C++ that receives frequent updates from 

a team of core developers. 

The APM autopilot has a suite of sensors, including plug-in sensors, that can 

detect aircraft position, attitude (yaw, pitch, and roll), altitude, and speed.  The autopilot 

can also measure environmental factors like air temperature, wind speed, and wind 

direction.  The data produced by the autopilot is logged and available in real-time through 

the telemetry feed.  APM:Plane was written to control the aircraft using the sensor 

information and react to environmental factors like wind.  APM:Plane includes a number 

of input parameters that allow the user to adjust the autopilot for various airframes and 

change aircraft performance. 

A concern is that the default APM:Plane parameter configuration is not optimized 

for maneuvers under various wind conditions.  Thus, this research is focused on 

improving aircraft performance when maneuvering in the presence of wind.  The 

maneuvers are those conducted in the process of following a ground vehicle. 

Each combination of wind speed, wind direction, and ground maneuver can be 

considered a unique condition or state.  There is likely a set of optimum software 

parameters unique to each state that improves aircraft performance.  Because the 

APM:Plane parameters can be updated in real-time, as the SUAS transitions to a 

particular state, the appropriate parameters setting can be instantaneously uploaded. 
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Experimental design is well-suited to help discover optimum software parameters.  

Part of the experimental design process is developing experiments that are efficient and 

cost-effective.  Hence, the process of finding improved parameters and enhancing the 

autonomous capability of the aircraft must use efficient experiments. 

The primary concern of an end-user of an SUAS is likely reliable functionality.  

Any modifications should not negatively impact the reliability of the SUAS.  Therefore, 

it is necessary to test autonomy enhancements. 

1.3  Research Objective 

This investigation into improving SUAS performance focuses on enhancing the 

aircraft’s ability to maintain a consistent distance from the ground vehicle in the presence 

of wind and while the vehicle is performing a basic maneuver.  That is, reducing the 

variability in following distance, defined as the horizontal distance from the ground 

vehicle to the aircraft, is the research objective.  During the experimentation process 

altitude is fixed, consequently, horizontal distance is an appropriate substitute for 

straight-line distance from the ground vehicle to the aircraft. 

1.4  Investigative Questions 

In order to meet the aforementioned objective, this research focuses on answering 

the following questions: 

1. Which APM:Plane control parameters — throttle slew rate, maximum bank angle, 

roll time constant, waypoint radius, waypoint loiter radius, and target airspeed — 

significantly impact variability in following distance? 
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2. Does changing parameters using state-based logic, where states are determined by 

wind direction, wind speed, and ground vehicle maneuver, reduce variability in 

following distance? 

3. What set of parameter values specific to each state reduces variability in 

following distance? 

1.5  Research Scope 

There is inherent combinatorial complexity in the possible scenarios composed of 

sequences of ground vehicle maneuvers and varying wind conditions.  To manage the 

complexity this research uses a number of rules.  First, a typical ground vehicle route is 

decomposed into simple maneuvers.  A ground vehicle generally conducts three 

maneuvers over the course of a typical route.  The maneuvers are drive straight, execute a 

90 degree turn, and execute a 180 degree turn or u-turn.  A right 90 degree turn and a left 

90 degree turn are equivalent.  To facilitate replication further rules are necessary.  The 

duration of each maneuver is 60 seconds.  The vehicle travels at a ground speed of 25 

miles per hour, only reducing speed to execute a turn.  Once the turn is complete, the 

vehicle returns to 25 miles per hour.  For the maneuvers that include a turn, the vehicle 

drives straight for ten seconds, executes the turn, and drives straight until 60 seconds 

have passed. 

Second, like a vehicle route, wind direction has infinite possibilities.  In order to 

discretize a continuous factor space, wind direction is relative to the aircraft heading and 

originates from one of three directions.  The directions are headwind, tailwind, and 

crosswind.  A headwind originates from -45 degrees to the 45 degrees.  A crosswind 
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originates from 45 degrees to 135 degrees or -45 degrees to -135 degrees.  A tailwind 

originates from -135 degrees to 135 degrees.  See Figure 1 for an explanation of wind 

direction. 

 

Figure 1: Wind Direction 

Third, a crosswind originating from the left side of the aircraft is considered 

equivalent to a crosswind from the right for the straight and u-turn maneuvers.  This 

simplification is not justifiable for the turn maneuver.  Therefore, both left and right 

crosswinds are considered when estimating autopilot parameters for the turn maneuver. 

Fourth, wind speed does not exceed the capability of the aircraft.  The factor 

space for wind speed is set accordingly.  This roughly equates to maximum wind speed 

being 50 percent or less of the aircraft cruise airspeed. 

Because the experiments involve environmental factors, experiments must take 

place in a simulated environment where weather can be controlled.  This also has the 

benefit of being more cost-effective and time-saving when compared to experimenting in 

a live environment.  Moreover, given the limited time allotted for this research, extensive 

live environment experimentation cannot occur. 

0⁰

45⁰

90⁰
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‐135⁰

‐90⁰
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1.6  Methodology Overview 

In order to reduce the variance of following distance, optimum autopilot 

parameters settings are estimated for each combination of wind speed, wind direction, 

and ground maneuver using statistical models.  The estimated optimum parameters are 

organized into states.  The states serve as the basis for a finite state machine (FSM) that is 

implemented using Python language scripts.  The scripts allow the SUAS to select 

optimal parameter settings based on the prevailing wind conditions its sensors detect. 

Optimum parameters settings are estimated using designed experiments.  

Designed experiments are also used to provide information on the FSM’s efficacy and 

reliability.  The majority of experiments occur in a simulated environment.  As such, this 

research endeavors to verify that the simulator is an adequate substitute for conducting 

live experiments. 

1.7  Thesis Preview 

The remainder of this thesis is organized as follows.  Chapter 2 briefly examines 

past Air Force Institute of Technology (AFIT) research related to this topic and the 

literature available on the autopilot control parameters that are at the core of this 

investigation.  Chapter 3 lays out the methodology used to answer the investigative 

questions.  Chapter 4 reports the results of the experiments described in Chapter 3 and 

provides answers to the investigative questions.  Chapter 5 concludes the discussion of 

this research effort and provides recommendations for future work. 
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II.  Literature Review 

2.1  Chapter Overview 

This chapter describes selected principles of experimental design and provides a 

brief definition of FSMs.  It also examines the literature available on APM autopilot 

control parameters that are seemingly relevant to this investigation.  Lastly, this chapter 

reviews past AFIT research efforts related to this research topic. 

2.2  Experimental Design 

Experimentation is the process of analyzing cause-and-effect relationships in a 

system by deliberately changing system inputs to produce a change in the system output.  

The inputs are termed factors and the output is known as the response.  The 

experimentation process follows statistical principles that result in valid conclusions.  The 

three basic statistical principles are randomization, replication, and blocking.  

Randomization means the individual runs of an experiment occur in random order.  

Replication refers to repeating independent runs to improve the estimation of error.  

Blocking is a technique used to exclude extraneous or nuisance factors and obtain a more 

precise estimate. [1] 

Montgomery (2012) proposes guidelines for designing experiments.  First, state 

the problem.  Second, select the response.  Third, select factors and factor levels.  Factor 

levels refer to selecting the high and low settings of the system input used during the 

experiment.  Fourth, choose an experimental design.  Fifth, perform the experiment.  

Sixth, analyze the results using statistical methods.  Last, draw conclusions and make 

recommendations. [1] 
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Choice of experimental design is a key element of experimenting efficiently.  A 

design should be selected based on the expected empirical model.  If the empirical model 

is expected to include first order terms, interaction terms, or higher order terms, the 

design must allow for their estimation.  An experimental design used in this research 

effort is the Plackett-Burman.  Plackett-Burman designs are suitable for experiments that 

require a number of runs that is a multiple of four.  Of interest are usually experiments 

that require 12, 20, 24, 28, or 36 runs.  For example, the 12-run Plackett-Burman design 

is a resolution III design that can estimate main effects for a system with eight factors.  

As it is a more efficient use of resources, the 12-run Plackett-Burman design may be 

preferred over a more popular fractional factorial design that would require 16 runs to 

estimate main effects for eight factors. [1] 

Another design is the no-confounding design (NCD).  The NCD is non-regular.  It 

is first-order orthogonal and can estimate main effects.  It can also provide estimates of 

all two-factor interactions where there is no complete confounding of any single two-

factor interaction.  This is an advantage over regular designs.  For example, a 24-run 

NCD [2] can estimate main effects and all two-factor interactions for a system with six 

factors.  A fractional factorial resolution IV design for six factors requires 16 runs.  

Unfortunately, many of the two-factor interactions are aliased with one another.  If two-

factor interactions are expected to be significant, but the expected number of significant 

two-factor interactions is unknown, a resolution IV design would require additional 

experimentation to provide individual estimates for two-factor interactions that are 

aliased.  The fractional factorial design for six factors that can estimate all two-factor 
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interactions without aliasing requires 32 runs.  Therefore, in this scenario the 24-run 

NCD holds the advantage and is more efficient. [1] 

The definitive screening design (DSD) is a three-level design that estimates main 

effects, two-factor interactions, and quadratic effects.  According to Jones (2011), 

“definitive screening designs offer the following advantages: 

 For continuous factors, the number of required runs is only one more than twice 

the number of factors. Categorical factors require two more than twice the number 

of factors.  

 Unlike resolution III designs, main effects are completely independent of two-

factor interactions. As a result, estimates of main effects are not biased by the 

presence of active two-factor interactions, regardless of whether the interactions 

are included in the model.  

 Unlike resolution IV designs, two-factor interactions are not completely 

confounded with other two-factor interactions, although they might be correlated.  

 Unlike resolution III, IV, and V designs with added center points, all quadratic 

effects are estimable in models comprised of any number of linear and quadratic 

main-effects terms.  

 Quadratic effects are orthogonal to main effects and not completely confounded 

(though correlated) with interaction effects.  

 With six through (at least) twelve factors, the designs are capable of estimating all 

possible full quadratic models involving three or fewer factors with very high 

levels of statistical efficiency.” [3] 
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Traditionally, the estimation of quadratic effects is done using a central composite design 

(CCD).  For six factors, a CCD requires 46 runs, which includes two center point runs.  

This design can estimate all main effects, two-factor interactions, and quadratic effects.  

However, a CCD is usually part of a sequential experimentation process.  Normally prior 

screening experiments would have reduced the number of factors and the CCD would be 

much more manageable.  If it is known beforehand that estimations of all the main, two-

factor interaction, and quadratic effects are not required, a DSD can screen and estimate 

effects, even quadratic effects, in one experiment.  A DSD for six factors requires 13 

runs.  Additional runs can be added by creating a matrix for eight factors and deleting the 

last two columns.  Using this method for six factors, the DSD would have 17 runs and is 

capable of estimating more effects without aliasing. [3] 

2.3  Finite State Machines 

An FSM is a model of computation.  It is a useful tool to model a system where 

inputs cause the system to transition to a particular condition or state.  The state depends 

on the value of the inputs.  An FSM has the following characteristics: 

 “The system must be describable by a finite set of states. 

 The system must have a finite set of inputs and/or events that can trigger 

transitions between states. 

 The behavior of the system at a given point in time depends upon the 

current state and the input or event that occur at that time. 

 For each state the system may be in, behavior is defined for each possible 

input or event. 



11 

 The system has a particular initial state.” [4] 

A simple example of an FSM is a turnstile (see Figure 2) one might find at a train 

station.  The turnstile has two states, locked and unlocked.  Inserting a coin in the 

turnstile causes the transition from locked to unlocked.  Once the individual who inserted 

the coin passes through the turnstile, it transitions back to locked. 

 

Figure 2: Simple Finite State Machine Example 

2.4  APM:Plane Firmware Parameters 

The APM:Plane firmware has more than 300 configurable parameters.  The 

definitions of a few parameters that are relevant to this research effort are covered.  

Parameters of interest are those that impact aircraft responsiveness and navigation.  

Aircraft responsiveness refers to those attitude parameters that affect two-dimensional 

movement.  Not under consideration are those parameters that affect the aircraft’s ability 

to change altitude.  Additionally, navigation parameters that impact waypoint 

characteristics are considered.  Parameter definitions follow: 

1. Throttle slew rate:  “Maximum percentage change in throttle per second.  A 

setting of 10 means the throttle will not change by more than 10% of the full 

throttle range in one second.” [5] 

a. Range:  0 to 100 

Locked Unlocked

Coin

Pass

Turnstile
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b. Increment:  1 

c. Units:  percent 

d. Default:  100 

2. Waypoint radius:  “Defines the maximum distance from a waypoint that, when 

crossed, indicates the waypoint is complete.  To prevent the aircraft from looping 

around the waypoint until it achieves the set waypoint radius, an additional check 

is made to see if the aircraft has crossed a “finish line”.  The finish line is a line 

that passes through the waypoint and is perpendicular to the flight path from the 

previous waypoint.  If that finish line is crossed, then the waypoint is considered 

complete.” [5] 

a. Range:  1 to 32767 

b. Increment:  1 

c. Units:  meters 

d. Default:  90 

3. Waypoint loiter radius:  “Defines the distance from the waypoint center the plane 

will maintain during a loiter.  If you set this value to a negative number then the 

default loiter direction will be counter-clockwise instead of clockwise.” [5] 

a. Range:  -32767 to 32767 

b. Increment:  1 

c. Units:  meters 

d. Default:  60 
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4. Maximum bank angle:  “The maximum commanded bank angle in either 

direction.” [5] 

a. Range:  0 to 9000 

b. Increment:  1 

c. Units:  centidegrees 

d. Default:  4500 

5. Target airspeed:  “Airspeed in cm/s to aim for when airspeed is enabled in auto 

mode.  This is a calibrated (apparent) airspeed.” [5] 

a. Units:  cm/s 

b. Default:  1200 

6. Roll time constant:  “This controls the time constant in seconds from demanded to 

achieved bank angle.  A value of 0.5 is a good default and will work with nearly 

all models.  Advanced users may want to reduce this time to obtain a faster 

response but there is no point setting a time less than the aircraft can achieve.” [5] 

a. Range:  0.4 to 1.0 

b. Increment:  0.1 

c. Units:  seconds 

d. Default:  0.5 

These parameter definitions are helpful in determining the precise effect each has 

on the aircraft and whether or not each parameter is a suitable candidate as a factor for 

experimentation.  Additionally, the definitions are helpful in determining initial factor 

settings. 
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2.5  Past AFIT Research 

Livermore (2014) proposed a method to calculate an optimal flight path for a 

small unmanned aircraft following a moving ground vehicle.  To accomplish this, 

Livermore developed a cost function, which minimized aircraft control effort and 

deviation from a desired ground vehicle following distance, as the basis to calculate an 

optimal flight path.  Control effort was represented by the aircraft roll rate.  Following 

distance was termed “slant range”.  Slant range is the straight-line distance between the 

aircraft and the ground vehicle.  Where X represents latitude, Y represents longitude, and 

h represents relative altitude, the formula to calculate slant range, SR, is given in 

Equation 1. 

   2 2 2
gv uav gv uavSR X X Y Y h      

Equation 1: Slant Range 

Where α is the weight factor and u is the aircraft roll rate, the cost function, J, is given in 

Equation 2. 

 
0

2 2

max

1
ft

desired

desiredt

SR SR u
J dt

SR u
 
    
      
     
  

Equation 2: Cost Function 

To generate the flight path, Livermore employed a Matlab® function, fmincon, 

which uses the interior point method to evaluate the cost function.  This solution provided 

a basis by which Livermore evaluated less computationally intensive heuristic methods of 

calculating an optimal flight path.  Given the hardware limitations of the APM autopilot, 
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the Matlab® function could not be implemented.  As one of the objectives was to develop 

a solution that could be implemented in real time and onboard the aircraft, a more 

feasible heuristic-based approach was used. [6] 

Neal (2014) implemented the heuristic-based approach by modifying the autopilot 

firmware to calculate J and SR over time and providing that data as part of the aircraft 

telemetry.  Equation 3 is Neal’s simplified cost function. 

 
2 2

max

1t desired t
t

desired

SR SR u
J

SR u
 
   

     
   

 

Equation 3: Simplified Cost Function 

Neal designed an experiment to find autopilot parameter settings that minimize 

the response, J.  The parameters Neal chose as factors were loiter radius, loiter range, and 

lead time.  Neal found loiter radius to be the significant factor in minimizing J.  Neal 

developed an FSM which monitored the reported values of J and SR to determine 

presence in one of three states, standard target tracking, low range target tracking, or high 

range target tracking.  The FSM was designed to keep the aircraft in the standard target 

tracking state.  If J or SR falls outside established thresholds, the autopilot increases or 

decreases the loiter radius.  An increase occurs if the aircraft is in the low range tracking 

state.  Conversely, a decrease occurs if the aircraft is in the high range tracking state. [7] 

The joint effort between Neal and Livermore resulted in a flight path with a lower 

cost function value when compared to the flight path generated by the aircraft using 

default autopilot firmware.  The default path cost function value was 113 times greater 

than the Matlab® generated or optimal flight path.  Boasting an improvement, the 
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heuristic approach reduced this ratio to only 7.5 times greater than the optimal flight path. 

[6] 

An earlier effort by Lozano (2011) employed regression analysis and 

experimental design in an attempt to improve SUAS endurance.  The unmanned aircraft 

under investigation was an electric Overhead Watch and Loiter (OWL) with an onboard 

Procerus Technologies® Kestrel autopilot.  The OWL was derived from the Raven RQ-

11B.  Fuel efficiency in terms of battery power conservation represented endurance. [8] 

Lozano used regression analysis to determine that throttle percentage was the 

factor that most significantly affected battery power as represented by amperage.  Lozano 

developed a predictive regression model with amperage as the response and throttle servo 

percentage as the independent variable. [8] 

Realizing that throttle percentage could not be directly controlled on the Kestrel 

autopilot, Lozano used a designed experiment to research other factors that affect throttle 

percentage and, thus, battery amperage.  Lozano selected throttle<airspeed Kp, 

pitch<altitude Kp, cruise airspeed, and throttle time constant as the Kestrel autopilot 

parameters to test.  Lozano developed models for both low and high wind conditions.  

Cruise airspeed was the common significant factor to both models.  Using the optimum 

airspeed settings resulted in improving aircraft endurance by approximately 30 percent 

under both low and high wind conditions. [8] 
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III.  Methodology 

3.1  Chapter Overview 

This chapter addresses the methods used to answer the research questions, 

namely: 

1. Which APM:Plane control parameters — throttle slew rate, maximum bank angle, 

roll time constant, waypoint radius, waypoint loiter radius, and target airspeed — 

significantly impact variability in following distance? 

2. Does the implementation of state-based logic, where states are determined by 

wind direction, wind speed, and ground vehicle maneuver, reduce variability in 

following distance? 

3. What set of parameter values specific to each state reduces variability in 

following distance? 

The answers to these questions are used to craft an FSM implemented through Python 

language scripting that allows the aircraft to dynamically select improved parameters 

settings based upon the prevailing state. 

3.2  Equipment and Materials 

 Experimentation involves an SUAS operating in a simulated and live environment 

where the aircraft follows a ground vehicle.  Generally, an SUAS consists of an air 

vehicle, a ground control station, communications hardware, and related support 

equipment and personnel.  In the simulated environment, a Windows 7 computer with the 

necessary software and hardware serves to represent both the SUAS and the ground 

vehicle. 
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For the simulated environment, the following hardware and software are used:  a 

simulated Sig Rascal 110 modeled in FlightGear 3.0.0, an open source flight simulator; 

an APM 2.6 autopilot loaded with APM:Plane 3.1.1, open source hardware-in-the-loop 

(HIL) firmware; and Mission Planner 1.3.17, open source ground control station 

software.  Franson GpsGate Client 2.6 software is used to simulate the ground vehicle.  

The APM is connected to the computer via USB. 

Mission Planner interfaces with the APM autopilot and allows control of the 

simulated Sig Rascal 110 in FlightGear.  FlightGear provides the APM with simulated 

environment inputs such as location, weather, and terrain.  GpsGate supplies a virtual 

GPS receiver that can play recorded GPS tracks and transmit the GPS data to Mission 

Planner.  With the APM set to follow-me mode, the simulated rascal follows the GPS 

track.  The GPS track represents the ground vehicle performing a maneuver.  See Figure 

3. 

 

Figure 3: Architecture Diagram – Simulated Environment 
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In the live environment the following hardware and software are used:  a Sig 

Rascal 110 with an APM 2.6 autopilot loaded with APM:Plane 3.1.1 flight firmware; a 

Windows 7 computer loaded with Mission Planner 1.3.17 and Franson GpsGate 2.6; and 

a safety pilot.  A communications modem and GPS receiver are attached via USB to the 

computer.  The communications modem allows Mission Planner to monitor and control 

the Sig Rascal 110.  The GPS receiver provides GPS location data to Mission Planner 

which in turn directs the Sig Rascal 110 to follow.  The computer is placed in a ground 

vehicle which performs maneuvers while the Sig Rascal 110 attempts to autonomously 

follow.  See Figure 4. 

 

Figure 4: Architecture Diagram – Live Environment 

3.3  Initial Conditions 

Starting conditions are standardized for each run to ensure consistency of results.  

Before each run, wind direction and wind speed are configured to the appropriate settings 

using the FlightGear manual weather configuration tool found under the environment tab.  
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The APM:Plane control parameters are set to the appropriate levels.  Next, the aircraft is 

put in a loiter above the ground vehicle at the starting point until the live telemetry feed 

shows an accurate reading of wind direction.  This usually requires the aircraft to loiter 

one to two times.  The ground vehicle begins its maneuver when the aircraft is directly 

behind the ground vehicle.  At this point the run has begun and the start time is recorded.  

Each run lasts 45 seconds. 

3.4  Factors 

For this research effort, following distance variance is the response of interest.  

The parameters, environmental conditions, and other aspects that impact following 

distance variance are considered and from those the factors for investigation are selected.  

A fishbone diagram helps organize thoughts (see Figure 5 below).  The definition of 

following distance variance is solely concerned with variability in two-dimensional 

movement.  There is no attempt to impact aircraft altitude.  The potential factors are 

divided into four categories:  aircraft responsiveness, navigation settings, ground vehicle, 

and environment.  Ground vehicle and environment are external to the SUAS and are the 

primary source of following distance variability.  In order to react to ground vehicle 

behavior and changing environmental conditions, aircraft responsiveness and navigation 

settings are addressed. 
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Figure 5: Fishbone Diagram 

Improving aircraft responsiveness, ability to react to changes in ground vehicle 

direction and speed, as well as, changes in wind direction and speed, likely improves 

following distance consistency.  The control parameters maximum bank angle and roll 

time constant impact aircraft turn agility, whereas, throttle slew rate and target airspeed 

impact the aircraft’s ability to increase or reduce speed and/or distance from the ground 

vehicle.  The APM autopilot treats the ground vehicle as a moving waypoint.  Thus, 

navigation settings involving waypoints should also impact following distance variability. 

After consideration, throttle slew rate, waypoint radius, waypoint loiter radius, 

maximum bank angle, target airspeed, roll time constant, wind speed, and wind direction 

are chosen as initial experimental factors.  Vehicle maneuver is used as a categorical 

factor.  Wind speed and wind direction are only viable factors for experiments conducted 

in the simulated environment.  In later iterations, target airspeed is excluded as a factor 
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and set equal to ground vehicle speed.  Wind direction is also changed to be a categorical 

factor.  Each experiment is a combination of the wind direction and ground vehicle 

maneuver. 

3.5  Factor Levels 

The APM:Plane control parameter settings can impact the ability of the aircraft to 

remain in flight.  An experiment is conducted to ensure factor levels are appropriately set 

to avoid crashing the aircraft during subsequent experimentation.  Additionally, this 

experiment serves to verify procedures and proper functioning of software and hardware.  

The purpose of this experiment is not to screen factors. 

Because experiments take place in the simulated environment, environmental 

factors of interest, namely wind direction and wind speed are controlled.  Wind direction 

and wind speed are added as continuous factors.  Initially, factor levels are set as wide as 

seemed feasible.  Table 1 shows the factors and initial factor levels. 

Table 1: Initial Factor Levels 
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This experiment employs a 12-run Plackett-Burman design — 12 runs at the 

design space extremes and one center run.  The experiment uses only one ground vehicle 

maneuver, the turn.  The design matrix is in Table 2. 

Table 2: Plackett-Burman Design Matrix 

 

The 12-run Plackett-Burman experiment was instrumental in determining proper 

factor levels and verifying selected initial conditions for each experimental run to be used 

throughout the experimentation process.  This experiment also provided encouraging 

evidence that relevant factors were selected as a number of them were found to be 

statistically significant.  The JMP® output is found in Table 3.  As mentioned previously, 

the purpose of this experiment was only to adjust factor levels, not screen factors. 

  

Run
Throttle 
slew rate

Waypoint 
radius

Waypoint 
loiter 

Max bank 
angle

Target 
airspeed

Roll time 
constant

Wind 
speed

Wind 
direction

1 1 1 1 1 1 1 1 1
2 1 ‐1 ‐1 1 ‐1 1 1 1
3 1 ‐1 1 1 1 ‐1 ‐1 ‐1
4 0 0 0 0 0 0 0 0

5 ‐1 1 ‐1 1 1 1 ‐1 ‐1
6 1 1 1 ‐1 ‐1 ‐1 1 ‐1
7 1 ‐1 ‐1 ‐1 1 ‐1 ‐1 1

8 ‐1 ‐1 1 ‐1 ‐1 1 ‐1 1
9 ‐1 1 1 1 ‐1 ‐1 ‐1 1
10 ‐1 ‐1 1 ‐1 1 1 1 ‐1
11 1 1 ‐1 ‐1 ‐1 1 ‐1 ‐1

12 ‐1 ‐1 ‐1 1 ‐1 ‐1 1 ‐1
13 ‐1 1 ‐1 ‐1 1 ‐1 1 1
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Table 3: Plackett-Burman JMP® Output 

 

During the course of the experiment, it became very apparent that the maximum 

bank angle low setting was too low.  This was the most significant finding.  At twenty 

degrees, the aircraft could scarcely execute a turn.  Add to that a higher speed headwind 

and the aircraft was blown far off course.  This resulted in overemphasizing maximum 

bank angle and requiring too much time to complete a run at the low setting.  Setting 

maximum bank angle at 20 degrees did not allow the aircraft to achieve the waypoint 

loiter radius, nullifying any effect this factor may have had. 

Following completion of the formal experiment, a few informal runs were 

conducted to further investigate a feasible low setting for maximum bank angle.  It was 

observed that a maximum bank angle of 30 degrees appeared to be an acceptable low 

setting and allowed the aircraft to reasonably execute a turn. 

It is standard practice to model variance using a log transformation of the 

response.  The appropriateness of this transformation was investigated using the Box-Cox 

transformation technique and the log transform was selected.  The power parameter, λ=0, 

corresponds to a log transformation, which can be seen in the interval depicted in Figure 

6. 
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Figure 6: Plackett-Burman Box-Cox Transformation 

3.6  Screening and Model Selection 

With amended factor levels, the next step is to screen the factors, check ANOVA 

assumptions, examine the suitability of a transformation of the response, and check for 

pure quadratic curvature.  Erring on the side of caution, a larger design to allow for 

estimation of main effects and two-factor interactions is selected.  A 24-run NCD [2] 

augmented with three center runs ensures adequate ability to estimate desired effects, 

check for curvature, and preclude the need for further experimentation as long as lack of 

fit for the first order model is not detected.  The number of continuous factors is reduced 

to six.  Wind direction is now considered a categorical factor and target airspeed is set to 

match ground vehicle speed.  There are nine unique combinations of vehicle maneuver 

and wind direction.  If no curvature is detected, thus ruling out the need for quadratic 

terms in the model, the 24-run NCD is repeated for each of the nine combinations.  The 

run order for each combination is randomized.  The factor levels for the 24-run NCD are 

in Table 4. 
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Table 4: NCD Factor Levels 

 

Table 5 is the NCD design matrix for a turn with a crosswind. 

Table 5: NCD Design Matrix 

 

Once data are collected, the stepwise regression tool found in JMP® 11 is used to 

select the model for each combination.  Primarily, the p-value threshold is used as the 

Run
Throttle 
slew rate

Waypoint 
radius

Waypoint 
loiter 

Max bank 
angle

Roll time 
constant

Wind 
speed

1 ‐1 ‐1 1 ‐1 ‐1 1

2 ‐1 ‐1 1 1 ‐1 1
3 ‐1 ‐1 ‐1 1 1 ‐1
4 0 0 0 0 0 0

5 ‐1 ‐1 1 1 1 ‐1
6 1 1 1 1 ‐1 ‐1
7 1 1 1 1 1 1

8 ‐1 1 1 ‐1 ‐1 ‐1
9 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1
10 0 0 0 0 0 0

11 ‐1 1 ‐1 ‐1 1 1
12 ‐1 1 ‐1 1 ‐1 1
13 1 1 ‐1 ‐1 ‐1 1

14 1 1 1 ‐1 ‐1 1
15 ‐1 1 1 1 1 1
16 1 ‐1 1 ‐1 1 1

17 ‐1 1 ‐1 1 ‐1 ‐1
18 1 ‐1 1 1 ‐1 ‐1
19 ‐1 ‐1 ‐1 ‐1 1 1

20 1 1 ‐1 1 1 ‐1
21 ‐1 1 1 ‐1 1 ‐1

22 1 ‐1 ‐1 1 1 1
23 1 ‐1 1 ‐1 1 ‐1
24 1 ‐1 ‐1 1 ‐1 1

25 0 0 0 0 0 0
26 1 ‐1 ‐1 ‐1 ‐1 ‐1
27 1 1 ‐1 ‐1 1 ‐1
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stopping rule, checking the resulting model against the Akaike information criterion 

(AIC) and Mallows’ Cp. 

The 24-run NCD experiment, a ground vehicle turn with a crosswind, resulted in 

confirming the validity of a log transformation of the response and the presence of pure 

quadratic curvature (see Table 6 and Figure 7).  Thus, from this point forward the natural 

logarithm of the following distance variance was used as the response and an 

experimental design capable of estimating quadratic effects was used. 

Table 6: NCD JMP® Output with Curvature 

 

 

Figure 7: NCD Box-Cox Transformation 

The NCD experiment also caused a reevaluation of the low setting for maximum 

bank angle.  Observing the runs, thirty degrees still appeared to be too low and overly 
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hinder the aircraft’s ability to execute turns.  The low setting for future experimentation 

was set at forty degrees. 

Because curvature was detected and quadratic terms are required in the models, a 

three-level, 17-run DSD that can estimate main effects, interactions, and quadratic terms 

is employed.  An example DSD design matrix is found in Table 7. 

Table 7: DSD Design Matrix 

 

3.7  Simulator Validation 

Validation of the model results poses a challenge.  Experimentation in a simulated 

environment allows control of wind speed and wind direction.  Obviously, live 

experimentation does not provide the same convenience.  Therefore, no attempt is made 

to validate models, but rather, validate the simulated environment as a satisfactory 

substitute for a live environment.  For this purpose, a live experiment is conducted first.  

Then, replication of the environmental conditions in the simulated environment occurs 

and the experiment is repeated.  A visual analysis is performed by comparing the route 

Run
Throttle 
slew rate

Waypoint 
radius

Waypoint 
loiter 

Max bank 
angle

Roll time 
constant

Wind 
speed

1 1 0 1 1 ‐1 1
2 ‐1 ‐1 1 ‐1 1 1

3 ‐1 1 0 ‐1 ‐1 1

4 ‐1 ‐1 ‐1 1 ‐1 1

5 ‐1 ‐1 1 1 0 ‐1
6 0 1 1 1 1 1

7 1 1 ‐1 ‐1 0 1

8 0 ‐1 ‐1 ‐1 ‐1 ‐1

9 1 ‐1 0 1 1 ‐1
10 ‐1 1 ‐1 1 1 0

11 1 ‐1 1 ‐1 ‐1 0

12 1 ‐1 ‐1 0 1 1
13 0 0 0 0 0 0

14 1 1 ‐1 1 ‐1 ‐1

15 ‐1 1 1 0 ‐1 ‐1

16 1 1 1 ‐1 1 ‐1
17 ‐1 0 ‐1 ‐1 1 ‐1
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trace of each live run with its simulated run counterpart.  Finding the two route traces 

similar provides evidence that the results of experiments conducted in the simulated 

environment can reasonably approximate results of those same experiments performed 

under near identical conditions in a live environment. 

Live environment experimentation can be fraught with unanticipated problems 

that result in delays or cancellations.  An experiment executed under potentially 

problematic conditions must be designed to allow for collection of statistically 

meaningful results in the unfortunate event that the experiment is cut short.  For this 

validation experiment, the JMP® 11 custom design tool is used to generate a test matrix 

that is organized into blocks of four runs each in order to reduce the impact of being 

unable to complete the experiment.  Table 8 is the test matrix. 

Table 8: HIL Validation Test Matrix 

 

3.8  Finite State Machine 

With the models selected for each combination of the ground vehicle maneuver 

and wind direction, desirability functions found in the JMP® 11 Desirability Profiler find 

the settings that minimize the following distance variance for each combination of ground 

vehicle maneuver, wind direction, and wind speed.  Each combination becomes a state in 

the FSM.  The APM:Plane control parameters unique to each state are recorded in a 

Run
Throttle 
slew rate

Waypoint 
radius

Waypoint 
loiter 

Max bank 
angle

Roll time 
constant

1 ‐1 ‐1 1 ‐1 ‐1

2 1 1 1 1 ‐1

3 ‐1 ‐1 ‐1 ‐1 1

4 1 ‐1 1 1 1
5 1 1 ‐1 1 ‐1

6 1 ‐1 ‐1 1 ‐1

7 1 ‐1 1 ‐1 1

8 ‐1 1 1 ‐1 ‐1
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matrix.  A matrix is developed for each ground maneuver.  Under APM:Plane firmware 

3.1.1, the aircraft cannot recognize ground vehicle maneuvers and, therefore, this aspect 

of the FSM is not tested.  Under APM:Plane firmware 3.1.1, the aircraft can, however, 

provide information on wind direction and wind speed, which allows for testing.  Mission 

Planner reports this information in the aircraft telemetry data. 

Mission Planner possesses the capability to execute Python language scripts.  

Scripts are written for each ground maneuver that accept wind direction and wind speed 

as inputs and output APM:Plane control parameters settings optimized to reduce the 

variability in ground vehicle following distance.  The script is executed under the same 

initial conditions described earlier. 

3.9  Finite State Machine Validation 

Validation of the models that serve as the basis of the FSM occurs by executing 

experiments in both the simulated and live environments that compare the following 

distance variance of a run using default parameters with the variance of a run using the 

experimentally suggested parameters.  The variances are compared using the hypothesis 

test shown in Equation 4. 

H
0
:

1
2 

2
2

H
1
:

1
2 

2
2
 

Equation 4: Hypothesis Test for the Equality of Two Variances 
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The ratio of the sample variances follows an F distribution.  The test statistic is found in 

Equation 5. 

F 
s
1
2

s
2
2

 

Equation 5: F-test for the Equality of Two Variances 

Where α=0.05 and n represents the sample size, the null hypothesis is rejected if the 

condition of Equation 6 is met. 

F  F ,n11,n21 

Equation 6: Rejection Region for the F-test of the Equality of Two Variances 

If the larger variance belongs to the run executed under default parameter settings and the 

difference is significant, then there is sufficient evidence to show that the FSM reduces 

variability in ground vehicle following distance. 

In the simulated environment, the FSM is tested for every ground vehicle 

maneuver conducted under a headwind, crosswind, and tailwind at wind speeds of 3 

knots and 11 knots.  This results in a 48-run, randomized test matrix where identically 

conditioned runs at default and improved parameters are conducted pairwise.  The test 

matrix is in Table 9. 
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Table 9: Simulated Environment Test Matrix 

 

  

Run Wind Direction Wind Speed Maneuver Parameters

Crosswind Left 11 Turn Default

Crosswind Left 11 Turn Script

Headwind 3 Straight Default

Headwind 3 Straight Script

Crosswind Right 11 U‐turn Default

Crosswind Right 11 U‐turn Script

Crosswind Left 11 Straight Default

Crosswind Left 11 Straight Script

Crosswind Left 11 U‐turn Default

Crosswind Left 11 U‐turn Script

Headwind 11 Straight Default

Headwind 11 Straight Script

Headwind 11 Turn Default

Headwind 11 Turn Script

Crosswind Left 3 U‐turn Default

Crosswind Left 3 U‐turn Script

Crosswind Left 3 Straight Default

Crosswind Left 3 Straight Script

Crosswind Left 3 Turn Default

Crosswind Left 3 Turn Script

Crosswind Right 3 Straight Default

Crosswind Right 3 Straight Script

Headwind 11 U‐turn Default

Headwind 11 U‐turn Script

Headwind 3 U‐turn Default

Headwind 3 U‐turn Script

Crosswind Right 3 Turn Default

Crosswind Right 3 Turn Script

Tailwind 11 U‐turn Default

Tailwind 11 U‐turn Script

Tailwind 3 U‐turn Default

Tailwind 3 U‐turn Script

Crosswind Right 3 U‐turn Default

Crosswind Right 3 U‐turn Script

Tailwind 3 Turn Default

Tailwind 3 Turn Script

Tailwind 3 Straight Default

Tailwind 3 Straight Script

Crosswind Right 11 Turn Default

Crosswind Right 11 Turn Script

Tailwind 11 Turn Default

Tailwind 11 Turn Script

Crosswind Right 11 Straight Default

Crosswind Right 11 Straight Script

Tailwind 11 Straight Default

Tailwind 11 Straight Script

Headwind 3 Turn Default

Headwind 3 Turn Script

12

1

2

3

4

5

6

7

8

9

10

11

24

13

14

15

16

17

18

19

20

21

22

23
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In the live environment, the FSM is tested for every ground vehicle maneuver 

twice.  As in the simulated environment, the runs at default and improved parameters 

occur pairwise.  The test matrix is in Table 10. 

Table 10: Live Environment Test Matrix 

 

3.10  Summary 

This chapter outlines the methodology used to answer the research questions.  The 

equipment and materials used to facilitate experimentation are described.  The first 

experiment is a 12-run Plackett-Burman conducted in the simulated environment for the 

purpose of ensuring the factor levels are set correctly.  Second, factors are screened and 

models are constructed by analyzing data from NCD or DSD experiments conducted in 

the simulated environment.  The detection of quadratic curvature in the first NCD 

experiment forces a switch to the DSD, which can estimate quadratic effects.  Third, the 

use of simulation software to develop models is validated by conducting near-identical 

experiments in the live and simulated environments.  The run traces from each 

environment are visually compared to determine parity.  Fourth, the FSM is created from 

Run Maneuver Parameters

U‐turn Default
U‐turn Script
Straight Default
Straight Script
Turn Default
Turn Script
Turn Default
Turn Script
Straight Default
Straight Script
U‐turn Default
U‐turn Script

2

4

6

5

3

1
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analytical results and the FSM is coded using Python language scripts.  Lastly, the FSM 

is validated by conducting experiments in the both the live and simulated environments.  

Experimental runs at default and improved parameter settings occur pair-wise.  The 

variances of each pair-wise run are compared using an F-test. 
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IV.  Analysis and Results 

4.1  Chapter Overview 

This chapter presents the results and analysis of the experiments described in 

Chapter 3. 

4.2  Screening and Model Selection 

The 17-run DSD was the design of choice to conduct ten experiments for each 

combination of ground maneuver and wind direction.  Initially, it was believed that a 

crosswind from the left or right would result in a symmetrical effect on the aircraft.  This 

likely is true for the straight and u-turn maneuvers.  However, the turn maneuver was 

reconsidered.  Following the execution of a 90 degree left turn with a crosswind from the 

left of the aircraft, the crosswind became a headwind.  A crosswind from the right 

resulted in a post-turn tailwind.  Thus, the wind effect was not likely symmetrical, so one 

additional combination was added for the turn maneuver—one that considered a right 

crosswind and another that considered a left crosswind.  Table 11 includes all of the 

tested combinations. 
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Table 11: DSD Combinations 

 

Following the completion of each experiment, a model was selected using the 

stepwise regression tool in JMP® 11.  During model selection, main effects, two-factor 

interactions, and quadratic effects were considered.  In general, maximum bank angle, 

waypoint radius, waypoint loiter radius, and wind speed were found to be the significant 

factors that impacted following distance variability, though waypoint radius appeared in 

only three of the ten models.  Not all models contained interaction and quadratic effects.  

Table 12 shows the complete results.  A grayed-out cell indicates the main effect was not 

significant and not included in the model.  Whereas, a factor with “No” or “Yes” entered 

in both or either the interaction and quadratic cells indicates the main effect was 

significant and included in the model.  In the combination column, the first letter refers to 

the ground vehicle maneuver (i.e. “S” represents straight), while the second letter(s) 

refers to the wind direction (i.e. “H” represents headwind). 

  

Combo Ground manuever Wind direction
1 Straight Headwind

2 Turn Crosswind right
3 U‐turn Tailwind

4 Straight Crosswind

5 Turn Tailwind

6 U‐turn Headwind

7 Straight Tailwind

8 Turn Headwind

9 U‐turn Crosswind

10 Turn Crosswind left



37 

Table 12: Model Selection Results 

 

In general, regardless of maneuver, a crosswind resulted in a significant quadratic 

maximum bank angle effect and an interaction with wind speed.  This is intuitive as a 

crosswind pushes the aircraft laterally off course which the aircraft subsequently corrects 

by turning (which involves banking) into the wind.  A higher wind speed results in 

requiring a larger maximum bank angle to improve performance.  The quadratic 

maximum bank angle effect results from decreased ability to turn as the bank angle 

exceeds a certain threshold.  This threshold likely exists where the ailerons have more 

impact on turn ability than the rudder.  The straight maneuver resulted in fewest 

significant factors.  This, too, is an intuitive result.  It is a less complicated scenario.  The 

aircraft must only compensate for wind and not changes in vehicle direction. 

As an example, one of the more interesting cases was the turn maneuver with a 

left crosswind.  Figure 8 shows the selected model and the results of the prediction 

profiler.  To find the settings that resulted in minimizing variance, a desirability function 

was employed.  As each state of the FSM corresponded to a ground vehicle maneuver, 

wind direction, and wind speed, wind speed was held constant at the low, center, and 

Interaction? Quadratic? Interaction? Quadratic? Interaction? Quadratic? Interaction? Quadratic?

SH No No No No

ST No No No No

SC Yes, WS Yes No No No Yes Yes, MBA No

TH No Yes No Yes No No

TT No No Yes, WS No No No Yes, WR No

TCr No Yes No No

TCl Yes, WS, LR Yes Yes, MBA No Yes, MBA No

UH Yes, WR No Yes, MBA No Yes, WS No Yes, LR No

UT Yes, WS No Yes, LR No

UC Yes, WS Yes No No Yes, MBA No

Max bank angle (MBA) Waypoint radius (WR) Loiter radius (LR) Wind speed (WS)
BlockCombo 
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high levels.  The desirability function then provided the other settings to minimize the 

following distance variance at the selected wind speed. 

 

Figure 8: DSD JMP® Output – Turn with Crosswind Left 

The process was repeated for each combination, producing Table 13, which 

represents the states of the FSM.  Factors that do not appear in the individual table cells 

were set to the default value. 
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Table 13: States Table 

 

4.3  Simulator Validation 

Development of the states in the FSM was accomplished using HIL simulation.  

The primary purpose of the FSM is to reduce following distance variance in a live 

environment.  As described in the previous chapter, an 8-run experiment was conducted 

in a live environment and then repeated in the simulated environment.  Then, the aircraft 

GPS tracks from corresponding runs were visually compared. 

Maneuver: Straight

Wind Speed Headwind Tailwind Crosswind Right Crosswind Left

3 knots Max bank angle=80 Max bank angle=80

Waypoint radius=40 

Waypoint loiter radius=30 

Max bank angle=70

Waypoint radius=40 

Waypoint loiter radius=30 

Max bank angle=70

7 knots Max bank angle=80 Max bank angle=80

Waypoint radius=40 

Waypoint loiter radius=30 

Max bank angle=55

Waypoint radius=40 

Waypoint loiter radius=30 

Max bank angle=55

11 knots Max bank angle=80 Max bank angle=80

Waypoint radius=40 

Waypoint loiter radius=30 

Max bank angle=40

Waypoint radius=40 

Waypoint loiter radius=30 

Max bank angle=40

Maneuver: Turn

Wind Speed Headwind Tailwind Crosswind Right Crosswind Left

3 knots
Waypoint loiter radius=70 

Max bank angle=65

Waypoint radius=40 

Waypoint loiter radius=90 

Max bank angle=80

Waypoint loiter radius=90 

Max bank angle=70

Waypoint loiter radius=90 

Max bank angle=70

7 knots
Waypoint loiter radius=70 

Max bank angle=65

Waypoint radius=140 

Waypoint loiter radius=90 

Max bank angle=80

Waypoint loiter radius=90 

Max bank angle=70

Waypoint loiter radius=90 

Max bank angle=72

11 knots
Waypoint loiter radius=70 

Max bank angle=65

Waypoint radius=140 

Waypoint loiter radius=90 

Max bank angle=80

Waypoint loiter radius=90 

Max bank angle=70

Waypoint loiter radius=90 

Max bank angle=75

Maneuver: U‐turn

Wind Speed Headwind Tailwind Crosswind Right Crosswind Left

3 knots

Waypoint radius=40 

Waypoint loiter radius=90 

Max bank angle=40

Waypoint loiter radius=90
Waypoint loiter radius=90 

Max bank angle=60

Waypoint loiter radius=90 

Max bank angle=60

7 knots

Waypoint radius=40 

Waypoint loiter radius=90 

Max bank angle=40

Waypoint loiter radius=90
Waypoint loiter radius=90 

Max bank angle=70

Waypoint loiter radius=90 

Max bank angle=70

11 knots

Waypoint radius=40 

Waypoint loiter radius=90 

Max bank angle=40

Waypoint loiter radius=30
Waypoint loiter radius=90 

Max bank angle=80

Waypoint loiter radius=90 

Max bank angle=80

Wind Direction

Wind Direction

Wind Direction
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The conditions on the day of the experiment in the live environment, Camp 

Atterbury, Indiana, were within the factor settings used to develop models.  Specifically, 

the average wind speed was eight knots.  The average wind direction was -60 degrees.  

The aircraft was given a target altitude of 150 meters and a target airspeed of 18 meters 

per second.  These settings were duplicated in the simulated environment.  Taking into 

account that average wind direction and speed were used in the simulated environment, 

the results were encouraging. 

 

Figure 9: GPS Tracks – Turn, Run 2 

Atterbury HIL
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Figure 10: GPS Tracks – U-turn, Run 3 

 As seen in Figures 9 and 10, the flight paths closely resemble one another.  The 

actual aircraft appears to be able to perform tighter turns than the virtual aircraft.  One 

other difference that is apparent in Figure 11 is that the actual aircraft occasionally turns 

clockwise.  This must be a function of whether or not the aircraft treats the ground 

vehicle as a regular waypoint or a loiter waypoint.  As long as the loiter radius is set to a 

positive value as it is in this case, the aircraft always loiters counterclockwise as viewed 

from above.  In the simulator, the virtual aircraft seems to always treat the ground vehicle 

as a loiter waypoint.  Whereas, the actual aircraft occasionally treats the ground vehicle 

as a regular waypoint, allowing it the freedom to turn clockwise or counterclockwise.  

While these differences are apparent, they do not detract drastically from the notion that 

models, though built using simulation data, demonstrate the desired impact on following 

distance variance in the real world.  This became apparent when validating the FSM. 

Atterbury HIL
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Figure 11: GPS Tracks – U-turn, Run 1 

4.4  Finite State Machine 

The aircraft, as equipped, had no ability to recognize ground vehicle movement, 

thus, the FSM was limited to autonomously selecting a state using wind direction and 

speed as inputs.  The ground vehicle maneuver information was provided to the aircraft 

by writing a separate Python script for each maneuver.  Foreknowledge of the ground 

maneuver allowed execution of the appropriate script.  Each script contained code written 

to temporarily store wind direction, wind speed, and waypoint heading from the aircraft 

telemetry, calculate a wind direction relative to the waypoint heading, and select a set of 

control parameters based on the relative wind direction and wind speed.  The control 

parameters were maximum bank angle, waypoint radius, and waypoint loiter radius.  The 

control parameter values were those from the states matrix.  Any control parameter not 

listed for a particular state was returned to its default value.  The script was executed 

according to the initial conditions set forth in Chapter 3. 

Atterbury HIL
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To calculate the relative wind direction, the script was written to transform the 

wind direction and relative wind direction to the format found in Figure 12.  This was 

done to match the format of the waypoint heading data and facilitate calculations. 

 

Figure 12: Wind Direction 

Python scripts can be found in Appendix A. 

4.5  Finite State Machine Validation 

The data produced from the aircraft following a ground vehicle comprised an 

irregular times series with constant mean and variance.  A plot of the following distance 

of one run is found in Figure 13.  Sampling the data set at intervals of two to ten seconds 

resulted in approximately the same sample mean and sample variance.  This was done in 

an attempt to reduce autocorrelation to ensure the sample variance was a meaningful 

statistic that could be used to perform a hypothesis test. 
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Figure 13: Following Distance Plot – Turn 

The presence of constant variance and mean seemed to be intuitive.  The aircraft 

responds to the ground vehicle as it would a regular waypoint.  The aircraft moves toward 

the waypoint and, if it is the last waypoint, the aircraft loiters around the waypoint.  In 

this scenario, the waypoint is a ground vehicle in motion.  The aircraft follows the ground 

vehicle, attempting to close the distance between the two.  If the aircraft overtakes the 

ground vehicle, it circles around and endeavors to loiter at a set radius.  However, the 

ground vehicle is in motion, so the aircraft is unable to loiter and the process continues as 

the aircraft once again attempts to close the distance from the ground vehicle.  This 

process continues as long as the ground vehicle speed does not exceed the capability of 

the aircraft. 

The entire data set for each run was used to calculate sample variance for use in 

these hypothesis tests.  There was no need to sample from the data set to reduce 

autocorrelation.  A larger sample size improved the power of the F-test and allowed the 

detection of smaller significant differences in the variance of runs using default control 

parameters versus runs using modified control parameters. 

Tu
rn



45 

Two experiments, a 48-run experiment in the simulated environment and a 12-run 

experiment, were conducted in the live environment.  The experiment in the simulated 

environment produced the results found in Table 14. 
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Table 14: Script Validation Results – Simulated Environment 

 

Of the 24 pairwise runs, 18 resulted in reducing the following distance variance.  

Twelve of the 18 reductions were significant.  Runs 11 and 24 were significant with a p-

Run Wind Direction Wind Speed Maneuver Parameters Variance Decrease? Significant?

Crosswind Left 11 Turn Default 8043.192

Crosswind Left 11 Turn Script 4233.793

Headwind 3 Straight Default 17001.78

Headwind 3 Straight Script 11137.68

Crosswind Right 11 U‐turn Default 2708.796

Crosswind Right 11 U‐turn Script 1468.434

Crosswind Left 11 Straight Default 13578.05

Crosswind Left 11 Straight Script 7812.023

Crosswind Left 11 U‐turn Default 4528.924

Crosswind Left 11 U‐turn Script 1945.296

Headwind 11 Straight Default 3137.678

Headwind 11 Straight Script 5858.507

Headwind 11 Turn Default 10700.08

Headwind 11 Turn Script 6824.058

Crosswind Left 3 U‐turn Default 5616.386

Crosswind Left 3 U‐turn Script 6060.369

Crosswind Left 3 Straight Default 10337.49

Crosswind Left 3 Straight Script 6046.178

Crosswind Left 3 Turn Default 4371.786

Crosswind Left 3 Turn Script 2035.302

Crosswind Right 3 Straight Default 15250.33

Crosswind Right 3 Straight Script 10432.7

Headwind 11 U‐turn Default 1496.441

Headwind 11 U‐turn Script 1152.455

Headwind 3 U‐turn Default 2536.41

Headwind 3 U‐turn Script 3178.739

Crosswind Right 3 Turn Default 4171.358

Crosswind Right 3 Turn Script 1929.27

Tailwind 11 U‐turn Default 10832.98

Tailwind 11 U‐turn Script 10487.79

Tailwind 3 U‐turn Default 5761.988

Tailwind 3 U‐turn Script 6221.181

Crosswind Right 3 U‐turn Default 4623.165

Crosswind Right 3 U‐turn Script 4072.253

Tailwind 3 Turn Default 2890.116

Tailwind 3 Turn Script 3050.905

Tailwind 3 Straight Default 8588.021

Tailwind 3 Straight Script 8967.192

Crosswind Right 11 Turn Default 5483.386

Crosswind Right 11 Turn Script 2482.297

Tailwind 11 Turn Default 1626.21

Tailwind 11 Turn Script 1395.997

Crosswind Right 11 Straight Default 14379.76

Crosswind Right 11 Straight Script 11758.35

Tailwind 11 Straight Default 4413.529

Tailwind 11 Straight Script 3691.494

Headwind 3 Turn Default 5584.921

Headwind 3 Turn Script 3903.075

YesYes

No

YesYes

Yes Yes

YesYes

No

YesYes

NoYes

Yes*Yes

YesYes

NoYes

YesYes

No

No

Yes No

No

Yes No

YesYes

No

Yes

Yes Yes

Yes

Yes Yes*

NoYes

NoYes22

23

24

19

20

21

16

17

18

13

14

15

10

11

12

7

8

9

4

5

6

1

2

3



47 

value of 0.0512 and 0.0615 respectively, while the remaining runs were significant at an 

alpha level of 0.05.  In general, the failure to reduce or significantly reduce variability 

appeared to be tied to wind direction.  Of the 12 failures to significantly reduce the 

variance, nine occurred under a headwind or tailwind.  As previously mentioned, the 

crosswind was the more interesting case and model selection for this case was 

straightforward.  Also, ground maneuver may have been a factor.  Six of the failures to 

significantly reduce variance occurred during a u-turn maneuver and three additional 

failures to significantly reduce variance occurred during a straight maneuver.  Model 

selection for these maneuvers was relatively difficult.  There seemed to be a tendency to 

fit noise.  The parameter estimates were generally smaller than the turn model parameter 

estimates, indicating a smaller impact on reducing variability. 

The experiment conducted at Camp Atterbury, Indiana produced the results found 

in Table 15. 

Table 15: Script Validation Results – Live Environment 

 

The live environment results were much more encouraging.  All pairwise runs 

resulted in a significant decrease in following distance variance.  Run two was significant 

with a p-value of 0.0569, while the remaining runs were significant at an alpha level of 

Run Maneuver Parameters Variance Decrease? Significant?

U‐turn Default 975.394

U‐turn Script 443.509

Straight Default 1501.853

Straight Script 1040.129

Turn Default 3686.457

Turn Script 1778.945

Turn Default 2097.117

Turn Script 1379.102

Straight Default 4109.605

Straight Script 1785.216

U‐turn Default 2859.928

U‐turn Script 829.513

YesYes

Yes*Yes

YesYes

YesYes

YesYes

YesYes

1

2

3

4

5

6



48 

0.05.  As the FSM was developed for use in a live environment, the fact that it performed 

better in a live environment is positive.  This phenomenon can likely be explained by the 

earlier observation that the actual aircraft appeared more responsive than the simulated 

aircraft.  The actual aircraft could perform tighter turns.  This indicated the actual aircraft 

likely responded better to changes in the control parameters than the simulated aircraft.  

Improved response results in further reduced variability. 

4.6  Summary 

This chapter covered the results of experiments described in the previous chapter.  

The Plackett-Burman experiment resulted in reducing the low setting for maximum bank 

angle and verifying proper functioning of the HIL simulation software and hardware.  

The NCD experiment resulted in an additional reduction in the low setting for maximum 

bank angle and finding significant curvature.  The DSD became the design of choice for 

model selection.  Improved control parameters were selected based on a desirability 

function applied to the selected models.  The improved parameters were organized into a 

matrix to represent the states of the FSM.  The simulator validation experiment showed 

the simulator sufficiently resembled the live environment, though the actual aircraft was 

more responsive than the simulated aircraft.  The FSM implemented through Python 

scripts resulted in significantly reducing following distance variability in the live 

environment when compared to default control parameter settings.  
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V. Conclusions and Recommendations 

5.1  Conclusions of Research 

The objective of this research was to improve SUAS performance by enhancing 

the aircraft’s ability to maintain a consistent distance from the ground vehicle in the 

presence of wind and while the vehicle performed a maneuver.  Reducing the variability 

in following distance through the implementation of an FSM to enhance aircraft 

autonomy accomplished the objective.  Results from sequential designed experiments 

served as the basis of the FSM. 

The experimentation process began with throttle slew rate, waypoint radius, 

waypoint loiter radius, maximum bank angle, target airspeed, roll time constant, wind 

speed, and wind direction as factors.  In the end, maximum bank angle, waypoint radius, 

and waypoint loiter radius with settings unique to combinations of wind direction, wind 

speed, and ground maneuver were determined to be the factors significant to reducing 

following distance variability. 

Each combination of wind direction, wind speed, and ground maneuver formed a 

state for a total of 36 states.  A set of values for maximum bank angle, waypoint radius, 

and/or waypoint loiter radius characterize each state.  Python scripts were written to 

implement the FSM and allow the SUAS to change the aforementioned control 

parameters to values best suited for prevailing winds and ground vehicle maneuver. 

Based on the results of the live environment validation experiment, the FSM 

reduced following distance variance by an average of 50 percent when compared to the 
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SUAS using default parameter settings.  This final result demonstrated the efficacy of 

implementing an FSM to enhance SUAS autonomy. 

Additionally, this research effort served as a proof of concept for using a 

sequential experimentation methodology to develop an FSM for SUAS application.  The 

majority of experiments took place in a simulated environment.  This demonstrated that a 

properly calibrated simulator can serve as a proxy to experimentation in a live 

environment.  Moreover, the experiments conducted in the simulated environment 

required significantly less time and other resources. 

5.2  Recommendations for Future Research 

Because the existing APM:Plane firmware did not have the ability to recognize 

ground vehicle maneuvers, the FSM was limited to autonomously selecting a state using 

wind direction and speed as inputs.  The SUAS operator had to provide the ground 

vehicle maneuver information to the SUAS by running the Python script unique to the 

maneuver.  A future research effort could improve the scripts to allow the APM autopilot 

to recognize the ground vehicle maneuver and use that information as a FSM input. 

Mission Planner, the ground station software, uses a waypoint to represent the 

ground vehicle.  Waypoint location data is logged.  It might be valuable to use the 

location data, specifically the two most recent data points, to calculate an azimuth.  As 

the ground vehicle changes direction, the azimuth value changes (see Figure 14).  The 

magnitude of change in azimuth could represent a vehicle maneuver.  Thresholds for 

equating azimuth change with a vehicle maneuver could be selected through 

experimentation.  Crossing a threshold would trigger a change in state. 
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Figure 14: Waypoints and Azimuths 

Incorporating the ability to detect ground vehicle maneuvers would greatly 

enhance the FSM.  The Python scripts could be combined into one and run in a loop, 

constantly monitoring ground maneuver, wind direction, and wind speed.  This would 

further enhance SUAS autonomy and allow use of the FSM to reduce following distance 

variability over a route made up of multiple ground maneuvers. 



52 

Appendix A: Python Scripts 

Straight 

print 'Start Script' 
 
windVel = cs.wind_vel 
 
if cs.wind_dir > 180: 
    windDir = cs.wind_dir - 360 
else: 
    windDir = cs.wind_dir 
 
relWindDir = windDir - cs.target_bearing 
 
if relWindDir < -180: 
    relWindDir = 360 + relWindDir 
elif relWindDir > 180: 
    relWindDir = relWindDir - 360 
 
if relWindDir > -45 and relWindDir < 45: # headwind 
    print 'Headwind' 
    Script.ChangeParam('LIM_ROLL_CD',8000) 
    Script.ChangeParam('WP_RADIUS',90) 
    Script.ChangeParam('WP_LOITER_RAD',60) 
elif relWindDir >= 45 and relWindDir <= 135: # crosswind right 
    print 'Crosswind Right' 
    if windVel <= 3: 
        Script.ChangeParam('LIM_ROLL_CD',7000) 
        Script.ChangeParam('WP_RADIUS',40) 
        Script.ChangeParam('WP_LOITER_RAD',30) 
    elif windVel > 3 and windVel < 11: 
        Script.ChangeParam('LIM_ROLL_CD',5500) 
        Script.ChangeParam('WP_RADIUS',40) 
        Script.ChangeParam('WP_LOITER_RAD',30) 
    elif windVel >= 11: 
        Script.ChangeParam('LIM_ROLL_CD',4000) 
        Script.ChangeParam('WP_RADIUS',40) 
        Script.ChangeParam('WP_LOITER_RAD',30) 
elif relWindDir > 135 or relWindDir < -135: # tailwind 
    print 'Tailwind' 
    Script.ChangeParam('LIM_ROLL_CD',8000) 
    Script.ChangeParam('WP_RADIUS',90) 
    Script.ChangeParam('WP_LOITER_RAD',60) 
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elif relWindDir >= -135 and relWindDir <= -45: # crosswind left 
    print 'Crosswind Left' 
    if windVel <= 3: 
        Script.ChangeParam('LIM_ROLL_CD',7000) 
        Script.ChangeParam('WP_RADIUS',40) 
        Script.ChangeParam('WP_LOITER_RAD',30) 
    elif windVel > 3 and windVel < 11: 
        Script.ChangeParam('LIM_ROLL_CD',5500) 
        Script.ChangeParam('WP_RADIUS',40) 
        Script.ChangeParam('WP_LOITER_RAD',30) 
    elif windVel >= 11: 
        Script.ChangeParam('LIM_ROLL_CD',4000) 
        Script.ChangeParam('WP_RADIUS',40) 
        Script.ChangeParam('WP_LOITER_RAD',30) 
 
print 'End Script' 

Turn 

print 'Start Script' 
 
windVel = cs.wind_vel 
 
if cs.wind_dir > 180: 
    windDir = cs.wind_dir - 360 
else: 
    windDir = cs.wind_dir 
 
relWindDir = windDir - cs.target_bearing 
 
if relWindDir < -180: 
    relWindDir = 360 + relWindDir 
elif relWindDir > 180: 
    relWindDir = relWindDir - 360 
 
if relWindDir > -45 and relWindDir < 45: # headwind 
    print 'Headwind' 
    Script.ChangeParam('LIM_ROLL_CD',6500) 
    Script.ChangeParam('WP_RADIUS',90) 
    Script.ChangeParam('WP_LOITER_RAD',70) 
elif relWindDir >= 45 and relWindDir <= 135: # crosswind right 
    print 'Crosswind Right' 
    Script.ChangeParam('LIM_ROLL_CD',7000) 
    Script.ChangeParam('WP_RADIUS',90) 
    Script.ChangeParam('WP_LOITER_RAD',90) 
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elif relWindDir > 135 or relWindDir < -135: # tailwind 
    print 'Tailwind' 
    if windVel <= 3: 
        Script.ChangeParam('LIM_ROLL_CD',8000) 
        Script.ChangeParam('WP_RADIUS',40) 
        Script.ChangeParam('WP_LOITER_RAD',90) 
    elif windVel > 3: 
        Script.ChangeParam('LIM_ROLL_CD',8000) 
        Script.ChangeParam('WP_RADIUS',140) 
        Script.ChangeParam('WP_LOITER_RAD',90) 
elif relWindDir >= -135 and relWindDir <= -45: # crosswind left 
    print 'Crosswind Left' 
    if windVel <= 3: 
        Script.ChangeParam('LIM_ROLL_CD',7000) 
        Script.ChangeParam('WP_RADIUS',90) 
        Script.ChangeParam('WP_LOITER_RAD',90) 
    elif windVel > 3 and windVel < 11: 
        Script.ChangeParam('LIM_ROLL_CD',7200) 
        Script.ChangeParam('WP_RADIUS',90) 
        Script.ChangeParam('WP_LOITER_RAD',90) 
    elif windVel >= 11: 
        Script.ChangeParam('LIM_ROLL_CD',7500) 
        Script.ChangeParam('WP_RADIUS',90) 
        Script.ChangeParam('WP_LOITER_RAD',90) 
 
print 'End Script' 

U-turn 

print 'Start Script' 
 
windVel = cs.wind_vel 
 
if cs.wind_dir > 180: 
    windDir = cs.wind_dir - 360 
else: 
    windDir = cs.wind_dir 
 
relWindDir = windDir - cs.target_bearing 
 
if relWindDir < -180: 
    relWindDir = 360 + relWindDir 
elif relWindDir > 180: 
    relWindDir = relWindDir - 360 
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if relWindDir > -45 and relWindDir < 45: # headwind 
    print 'Headwind' 
    Script.ChangeParam('LIM_ROLL_CD',4000) 
    Script.ChangeParam('WP_RADIUS',40) 
    Script.ChangeParam('WP_LOITER_RAD',90) 
elif relWindDir >= 45 and relWindDir <= 135: # crosswind right 
    print 'Crosswind Right' 
    if windVel <= 3: 
        Script.ChangeParam('LIM_ROLL_CD',6000) 
        Script.ChangeParam('WP_RADIUS',90) 
        Script.ChangeParam('WP_LOITER_RAD',90) 
    elif windVel > 3 and windVel < 11: 
        Script.ChangeParam('LIM_ROLL_CD',7000) 
        Script.ChangeParam('WP_RADIUS',90) 
        Script.ChangeParam('WP_LOITER_RAD',90) 
    elif windVel >= 11: 
        Script.ChangeParam('LIM_ROLL_CD',8000) 
        Script.ChangeParam('WP_RADIUS',90) 
        Script.ChangeParam('WP_LOITER_RAD',90) 
elif relWindDir > 135 or relWindDir < -135: # tailwind 
    print 'Tailwind' 
    if windVel < 11: 
        Script.ChangeParam('LIM_ROLL_CD',4500) 
        Script.ChangeParam('WP_RADIUS',90) 
        Script.ChangeParam('WP_LOITER_RAD',90) 
    elif windVel >= 11: 
        Script.ChangeParam('LIM_ROLL_CD',4500) 
        Script.ChangeParam('WP_RADIUS',90) 
        Script.ChangeParam('WP_LOITER_RAD',30) 
elif relWindDir >= -135 and relWindDir <= -45: # crosswind left 
    print 'Crosswind Left' 
    if windVel <= 3: 
        Script.ChangeParam('LIM_ROLL_CD',6000) 
        Script.ChangeParam('WP_RADIUS',90) 
        Script.ChangeParam('WP_LOITER_RAD',90) 
    elif windVel > 3 and windVel < 11: 
        Script.ChangeParam('LIM_ROLL_CD',7000) 
        Script.ChangeParam('WP_RADIUS',90) 
        Script.ChangeParam('WP_LOITER_RAD',90) 
    elif windVel >= 11: 
        Script.ChangeParam('LIM_ROLL_CD',8000) 
        Script.ChangeParam('WP_RADIUS',90) 
        Script.ChangeParam('WP_LOITER_RAD',90) 
 
print 'End Script'  
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Appendix B: Storyboard 
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